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A NEW, RELIABLE FAMILY OF SPLIT-OPERATOR 
METHODS FOR COMPUTING REACTING FLOWS 
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SUMMARY 

A new, reliable family of split-operator methods is presented for the computation of reacting flows. 
The methods may be inconsistent or consistent depending upon their applicability. Analyses are carried 
out for flow combusting according to general multicomponent, multireaction linear or non-linear 
chemical kinetic models, and conditions for guaranteed stability/convergence are established. A special 
chemical splitting parameter can also be embedded in the methods enabling accelerated convergence of 
an iterative finite-difference solution. Computed results highlight the capabilities and properties of the 
methods. 
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1. INTRODUCTION 

The problem of the stiffness of the equations governing reactive systems, whether static or 
dynamic, has been known since the first computations of laminar flames were performed 
some thirty years ago.' The wide spectrum of reactive collision times, that enters the 
chemical production terms via the kinetic rate constants, produces a set of, say, n eigen- 
values whose orders of magnitude usually obey the following inequality: 

Unfortunately, it is generally the eigenvalue possessing the smallest real part that sets the 
bound for the maximum time step for numerical integration, even when those terms 
associated with this eigenvalue are of little physical importance. For static reacting systems 
(or one-dimensional dynamic problems) the governing ordinary differential equations can be 
reliably solved using the, now standard, algorithm of Hindmarsh' based on Gear's method.3 
Alternative 0.d.e. solvers are discussed elsewhere.- For reacting flow systems the complex 
way in which the conservation equations for momentum, energy, species and mass are linked 
only serves to accentuate the stiffness difficulty. A variety of such problems have been 
tackled using inconsistent operator-splitting techniques7-13 in which the more slowly varying 
portions of the equations are treated using a large time (or space) step, whereas the 
stiffness-causing chemical kinetics contributions are tackled separately using an appropriate 
smaller integration step. (Some theoretical justification for this kind of approach is outlined 
by Yanenko14) The term 'inconsistent' is applied, since not all the terms of the original 
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differential equations appear at each stage of the splitting. Under circumstances in which 
there is not strong coupling between the various participating physico-chemical processes 
their separate numerical treatment is valid and, indeed, efficient. However, as has been 
pointed out,1s there do exist certain problems in which the coupling is strong, so that 
inconsistent splitting becomes invalid. In such cases consistent splitting has been performed, 
with the difficult chemical source terms being linearized about the species concentrations of 
the previous time or iterative step (see Reference” for relevant references). Linearization of 
one form or another seems to work (sometimes with the aid of some manipulation based on 
physical intuitionI6) but does not appear to be foolproof in terms of stability/convergence. 

In the current paper a new generalized family of operator-splitting methods is presented 
for reacting flows. Members of the family are of either the inconsistent or consistent types. 
For inconsistent members a convergence/stability analysis is outlined for the case of flow in 
which the combustion is modelled by a general multicomponent (quasi-) unimolecular set of 
chemical reactions. The analysis leads to conditions for convergence/stability, and also 
indicates how accelerated iterative solutions may be obtained by suitable regulation of a 
special chemical splitting parameter. In addition, for non-linear kinetics the ‘correct’ form of 
quasi-linearization of the source terms is deduced so that convergence/stability is completely 
ensured when using consistent splitting. Finally, some computed examples highlight the 
properties of the family of methods. 

2. GOVERNING EQUATIONS AND CHEMICAL KINETICS 

The governing species conservation equations for a two-dimensional, possibly turbulent, 
reacting flow are of the form 

(2) 
ami 
at 
_- - Cm, +Dmi +Si, i = 1 , 2 , .  . . NS 

where mi is the mass fraction of species i, C and D are convection and diffusion operators, 
respectively, and Si is the chemical source term for species i. In general, there will be 
coupling between the NS equations (2), the conservation equations for mass, momentum and 
energy and any equations that comprise a turbulence model. It is presumed that appropriate 
boundary and initial conditions are specified on the boundary 6B of the region B within 
which the governing equations are valid. Let there be NR reversible chemical reactions 
occurring between the NS species of the system: 

i=1 i = l  

where vii, vk are the stoichiometric coefficients of hi occurring as a reactant or product, 
respectively, in reaction i. The chemical source terms Si then assume the form 

where p is the mixture density, Mi is the molecular weight of species i, and kFq and k ,  are 
the forward and reverse rate constants of reaction q. The rate constants are generally 
expressed ,in Arrhenius form: 

kq = A, r w - - ( E u ’ R T )  ( 5 )  
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where y,, A, are constants, 7’ is the temperature, E, is the activation energy for the reaction 
and R is the universal gas constant. If the combustion of the reacting flow system is modelled 
by a set of quasi-unimolecular reactions occurring between the NS species, then the 
expressions (3) and (4) simplify to  

hi + Ai, ( i  # j )  for all i ,  j ( 3 4  
NS NS 

SJM, = - 1 kiimi + kfimi, i = 1,2. . . NS 
j = l  j = l  

where kii is the rate constant associated with the production of hj from hi. Henceforth, a 
distinction will be made between the non-linear kinetics ((3) and (4)) and the linear kinetics 
((3a) and (4a)), which will be referred to as NLK and LK, respectively. If T~ and TD are 
characteristic times for the physical processes of convection and diffusion, and T, is the 
reactive collsion time for reaction q, then a typical ordering of times will be 

7 1  < 7 2  < 7 3  . . . 71 << Ti+l< Tl+2 < . . . < 7 2 ~ ~  < ( T c  Or TD) (6) 
The wide disparity between the various time (or, equivalently, length) scales is responsible 
for the stiffness of the governing equations (2), which prevents attainment of a numerical 
solution by standard finite-difference methods. 

3. SPLIT-OPERATOR METHODS 

(a) Linear kinetics and inconsistent splitting 

the general form 
For simplicity the case of LK will be considered first. Equation (2) can then be written in 

am _- -(C+D+A)m 
at 

where m is the mass fraction vector and C, D and A are matrices of convection, diffusion and 
LK, respectively. For clarity the latter matrix’s elements are 

p = l  

with Sii being the Kronecker delta. 
The formal solution of (2a) can be written as 

m(t) = exp [t(C+D+A)lm(O) 

whence split-operator approximate methods can be constructed. 
The governing principle for constructing inconsistent split-operator methods is usually to 

separate the solution, (8) into several parts, each of which is compatible with its own typical 
time scale. Here, the splitting will assume a more general appearance so as to encompass the 
possibility of accelerating convergence to a steady state, as reported recently for the reacting 
flow context.” 

Equation (8) is rewritten in the following form: 

exp [ - t ( 1 -  P)A]m(t) = exp [t(C+D+ PA)]m(O) ( 8 4  
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whence the following two-steps are derived: 

m* = exp [t(C+D+ PA)]m(O) 

m(t) = exp [ t ( l  - p)A]m* 

where p, lying between zero and one, is called the chemical splitting parameter. These two 
steps provide the basis for the finite-difference formulae by means of which equation (2a) is 
solved. For example, expanding (9a) and replacing C and D by appropriate finite-difference 
operators, C, D, leads to the fully explicit scheme for the first step: 

m" = [ 1 + (C + D + PA) t $n (O)  (104 

Alternatively, implicit methods can be constructed, one of which has been used in this work: 

[l - pAt]m* = [1+ (C+D)t]m(O) (10aa) 

As for the second stage (9b); it turns out to be convenient to translate it back into differential 
form: 

dm -=(I- 
dt 

Only stiffness-causing elements are contained in this stage. However, the availability of 
many stable stiff-0.d.e. solvers renders the stiffness problem unimportant vis-a-vis obtaining 
a numerical solution. Such an 0.d.e. solver will take many small time steps to complete one 
sweep of stage (lob). This can be viewed as resplitting (9b) into many components: 

where 
N 1 t i = t  

i = l  

Several points should be noted for the split-operator method consisting of (1Oaa) and (lob). 
Unlike the previous chemical splitting scheme suggested by the author17 the current one is 
chemically consistent at each stage, and, therefore, more accurate. Each value of p defines a 
member of this new family of methods. The method of Greenberg and Presser" is recovered 
by setting p = 0. For elliptic governing equations (i.e. when the steady state is presumed from 
the outset rather than approached asymptotically via the limit slat -+ 0) an appropriate 
choice of t reproduces identically the iterative method adopted in Reference 13, where 
Hindmarsh's algorithm was used for equation (lob). This simple manner of splitting indicates 
how complex kinetics can be incorporated with relatively little effort within the framework of 
existing elliptic codes, if It should be pointed out that, whereas for the 
parabolic equations the intermediate m* can be taken as m(t/2) so that integration of (lob) 
proceeds from t/2 to t, for the elliptic case the limits of integration are taken as dependent on 
local characteristic convection and diffusion times. Specifically, it has been previously shown 
to be correct to integrate (lob) from t = 0 to T where T is given by17 

where u, v are velocity components and D is the diffusion coefficient. 
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Finally, it is pointed out that a similar alternative consistent approach to treating stiffness 
has been reported7 using the method of lines. Only the RHS of equation (2a) is discretized 
leading to a large coupled set of 0.d.e.s that can be solved using a stiff-0.d.e. solver. All 
points in the field are simultaneously coupled but, consequently, computational overheads 
and time are large.7 On the other hand, the aforementioned splitting approach (when 
applicable) has the advantage of necessitating the solution of smaller sets of 0.d.e.s (NS 
equations) separately at each point in the field, the coupling to neighbouring points resulting 
from the first, more rapidly executed, stage of the splitting. For multidimensional problems 
splitting is computationally preferable. 

(b) Analysis and properties 

Having described the construction and application of the inconsistent splitting methods 
their special properties will be investigated. In order to gain some insight into conditions for 
convergence/stability, and to clarify the role of the chemically splitting parameter, p, an 
analysis of the linear case will be performed. 

The general finite-difference formulation of Chien'' is adopted for the convection and 
diffusion operators. It is noted that as equations (10aa) and (lob) stand there is coupling 
between the elements of m because the matrix A is fully populated. However, by using a 
matrix similarity transformation 

m = M q  (13) 
the following decoupled finite-difference equation results for q at each point (j, k )  in the 
field: 

where 
Q = M-IAM 

is a diagonal matrix with elements qs that are the eigenvalues of A, Gj, Gk are Chien's decay 
functions, Rej and Rek are cell Reynold's numbers based on local velocity components and 

[Pjk, P;kl= CZ(6X)"Gj +('%>'Gk], GjGk(6x 8Y)'Rel (16) 
In the above the time-step, t, has been chosen so as to enable the elliptic and parabolic cases 
to be treated together. This is not essential to the analysis. Since Pjk and & are always 
positive it is evident that the signs of the eigenvalues of A are of utmost importance for 
stability purposes. It can be proved that the structure of A dictates only non-positive 
eigenvalues (see reference 20 for proof). Now, the solution of equation (lob) (in terms of the 
similarity variable) is 

(17) 

(18) 

q = ~ X P  [(I - PhQlq* 

q"+'= exp [(l - p)TQflq" 

Combining (14) and (17) for a complete time step or a single iterative sweep leads to 

where the elements of Y are derived from equation (14). 
Thus, if the fluid field is given and fixed it can be shown that a sufficient condition for 
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convergence of the split scheme is given by 

where 

I I 

whence it is deduced that for stability/convergence it is sufficient that 

which collapses to the well-known cell Reynolds’ number limitation if the decay functions 
equal unity. For upwind differencing the conditions are once again satisfied. Note that if no 
splitting is made ( p  = 1) conditions (21) still apply with the occurrence of enhanced diagonal 
dominance stemming from the contribution of the chemistry. For split schemes the occur- 
rence of the exponential term from the chemistry, as well as the enhanced diagonal 
dominance only serves to  relax conditions (21) under certain circumstances. Furthermore, it 
should be noted that it is possible to attain accelerated convergence with the help of the 
chemical splitting parameter. The functional dependence of the LHS of equation (19) on p is 

A minimum value of f exists in the range 0 I 6 5 1 so that appropriate regulation of 6 can be 
expected to accelerate convergence of an iterative procedure. Unfortunately, a priori 
estimation of the optimum value of 6 is time-consuming and difficult, particularly if the NLK 
case is under consideration. This situation is somewhat analogous to the trial and error 
determination of an optimal under-relaxation parameter for iterative solution of non-linear 
systems of equations. 

(c) Nonlinear kinetics and consistent splitting 

The shortcomings of inconsistent splitting methods have been alluded to in the Introduc- 
tion. For strong coupling between the physico-chemical processes a consistent splitting scheme 
is preferable, in which all processes contribute explicitly to  each stage of the splitting. For 
illustrative purposes let CEO in equation (8) and suppose D is the Laplacian: 

D=-+- a2 a2 
ax2 ay2 

Furthermore, assume NLK so that: 

A = A(m) (24) 
implying that the formal solution, equation (8), is now approximate: 

m( t )  = exp [ t (C + D + A(m(0)))lm(0) 
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A consistent splitting scheme will be 

659 

exp [ -; ( s + A ) ] m *  = exp [; ($+A)]m(O) 

exp [ -; G + A ) ] m ( t )  = exp [; ( s + A ) ] m *  

(In practice, it will be preferable to evaluate A during the second stage according to A(m*).) 
It is not difficult to show that if central differences are used for the space differentials the 
condition for a stablelconvergent solution hinges upon the non-positiveness of the eigen- 
values of A. Many workers have constructed A by time linearization of the source terms’ 
leading to the Jacobian aSi/amj, whose eigenvalues need not necessarily be non-positive. To 
ensure negative eigenvalues a sort of quasi-linearization will be performed. The argument is 
based on the LK analysis. As was shown before, the actual structure of (the LK) A precluded 
positive eigenvalues. Therefore, for the NLK case A will be built so as to have the same 
element-structure as A of the LK case. For example, consider a single reversible reaction: 

k ,  

k ,  
Ai+Aj 2 A,+& (26) 

The source terms for the four species will be written as 

Now, define the following ‘constants’: 

Then, A assumes the form: 
-Ki, 0 0 

0 -Kip Kp, 
0 Kip -Kpj 

Kit 0 0 

which can be thought of as derived from the following 

0 O I  

- K i  J 
pseudo-unimolecular reaction set: 

A then has non-positive eigenvalues as required. Construction of A in this fashion is always 
possible, irrespective of the number of participating reactions. Hence, stability/convergence 
of the consistent splitting scheme derived from (25) can be guaranteed. The chemical 
splitting parameter can also be inserted into these schemes to accelerate convergence, if 
required. 

(d) LK and consistent splitting; NLK and inconsistent splitting 

The analysis of the previous section simplifies if linear kinetics are used, since A (which 
remains constant now) has non-positive eigenvalues. For NLK with an inconsistent splitting 
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scheme such as (10aa)+(lOb) the following line of reasoning applies. Suppose all the 
chemistry is delegated to the second stage (0 = 0) and a stiff-0.d.e. solver is used. It is safe to 
say that 

rl=prl* (31) 

IIPII < 1 (32) 

describes this stage with 

for some norm. Combining this with conditions (21) (that stem from the first stage of the 
splitting) implies, once again, that stability/convergence can be made inevitable. In fact, this 
provides a rational explanation for the successful use of all split-operator methods of this 
nature .7-13 

(e) Truncation errors, order of splitting and iterative convergence criteria 

The local order of accuracy of both the inconsistent and consistent splitting schemes is that 
of the worst time and spatial approximations uscd. Thus, typically, for forward time and 
central space differencing the truncation error will be O(At,  Ax2, Ay2).  The differences 
between the various splitting schemes are expressed via the coefficients of At7 Ax2, Ay2. If the 
chemical splitting parameter p is also used the coefficients are similarly affected and become 

-dependent. Proof of convergence (in the sense of the behaviour of the difference equations 
as At, Ax, Ay + 0) is straightforward for linear kinetics only. Numerical experiments seem to 
indicate that taking a finer mesh and/or a smaller time step causes ‘convergence’ to some 
limiting solution for non-linear kinetics (see later). The order of execution of the splitting can 
be of great importance. It is irrelevant for LK with both consistent and inconsistent splitting, 
and NLK with consistent splitting. (Parenthetically, it is noted that it is preferable in the 
latter case to iterate the second stage for each time step; convergence occurs generally within 
two or three iterations.) However, care must be exercised for NLK with inconsistent 
splitting, for reversing the order of execution can produce different results. The extent of 
such a discrepancy depends on how much more dominant the convection-dihion process is 
than the chemistry, or vice versa. For large predominance (several orders of magnitude) the 
discrepancy is generally negligible, since the perturbation caused by the less dominant 
process is small. When there is stronger coupling between the processes the perturbations are 
large so that inconsistent splitting may produce the wrong solution. It is recommended to 
monitor the changes due to the various processes and to decide whether inconsistent or 
consistent splitting should be applied in accordance with some relative magnitude criterion. 
This procedure optimizes, in some sense, both execution time and accuracy of the solution. 
For elliptic problems iterative convergence should be measured (for inconsistent splitting) in 
terms of both the increments induced due to each split stage separately and that resulting 
from application of both the stages. 

4. COMPUTED RESULTS 

In order to investigate the properties of the new family of methods some test calculations 
were performed, with a variety of linear and non-linear kinetic schemes. 

(a) Linear kinetics-reacting Couette flow 

The problem at hand is illustrated in Figure 1. There is injection of the reactants at the 
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VO 

Figure 1. Couette flow with injection and suction 

stationary wall and equal suction at the horizontally travelling wall. The pressure gradient is 
zero. Assuming Prandtl and Schmidt numbers of unity produces a trivial constant enthalpy 
solution. The non-dimensionalized governing equations were: 

where 

and 
(34) 

(35) 
Boundary conditions were: 

u =o, 0 = -00, mi = mio), at y = h 
u = v o ,  2,=-00, amJay = 0, at y = 0 

(36) 

Table I. Chemical kinetic models and data for reacting Couette flow 

Model Reactions 
Rate-constants data 
(k = A  exp (-E/T)T@) 

1. Linear 
(hypothetical) 
case 1. 

A + B  
B-A 
B-C 
C-B 
A + C  
C-A 

lo3 

lo4 

lo-’ 
10 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

2. Non-linear 0 3  + M + 02+ O+ M 9.9 x loz4 +11,350 0 
(ozone 0 + O,+ M + O3 + M 7.4 x 1oI2 1050 0 
decomposition)* 0 + 0 3  -+ 202 1.2 x 10” -2395 0 

O+O+M+ O2+M 1.4 - 170 -1 

* Data taken from Reference 23 
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Re,, = 6 . 2  

A : B : C  = 1:O:O 

Figure 2. Effect of chemical splitting parameter on convergence rate-linear kinetics 

At the vertical boundary conditions of periodicy were imposed. Data relevant to the 
chemical model are summarized in Table I. 

For the inconsistent splitting methods the solution of the second stage was performed 
using the IMSL adaptation of Hindmarsh's Gear-type algorithm. This method was chosen 
simply because of its availability. Clearly, any stable efficient stiff-0.d.e. solver could have 
been adopted. The relative error bound supplied for integration was the most liberal one 
recommended, A sparse uniform mesh 5 X 11 covered the solution region-mesh 
adaptation was not examined here. For all cases computed convergence was attained 
(relative error of 5 x see previous section on convergence testing) irrespective of the 
initial guesses (which had simply to obey mass conservation) and the value of the chemical 
splitting parameter. In Figure 2 a typical curve showing the dependence of the convergence 
rate on @ is shown. The optimal values of @ lie in the range [0,0-25] approximately. The 
number of iterations has been used as a measure of merit rather than CPU time since 
integration by Gear's method may be overcautious. (Actually, for the problem at hand, CPU 
time was nearly a linear function of the number of iterations.) The effect of the splitting 

V, = 0.5 
A : B : C  = 1 : O : O  

0.6 - 
m 

0.4--p = 0 

0.2 - 

0 0.2 0.4 0.6 0.8 1.0 

[y ' hl 

Figure 3.  Concentration profiles for reacting Couette flow-linear kinetics 
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parameter on the concentration profiles is illustrated in Figure 3, where the curves computed 
using the limiting values of 0 are shown. The discrepancy stems from the different 
coefficients in the truncation errors and the sparsity of the mesh. Calculations using more 
dense meshes of 5 x 22 and 5 X 33 virtually annihilated the discrepancy indicating that 
splitting was valid for the problem at hand. The overall qualitative picture in Figure 3 is 
consistent with the relative sizes of the rate constants producing and depleting the various 
species (see Table I). 

(b) Non-linear kinetics-inconsistent splitting 

Two problems involving non-linear kinetics were tackled using inconsistent splitting. The 
first was Couette flow with ozone decomposition. Relevant data are shown in Table I. The 
second involved combustion of N,-0, in a ‘hypersonic’ boundary layer. The outer edge of 
the layer lies in the region in the front of the shock wave produced, for example, when a 
blunt-nosed space vehicle re-enters the Earth’s atmosphere. The high temperatures experi- 
enced lead to the dissociation of N, (and 0,). In turn, the heat of reactions in the boundary 
layer adhering to the nose of the vehicle may produce large temperature gradients and, 
hence, additional heat flux to the vehicle thus threatening its structural integrity. The 
governing equations and a thorough study of the effects of the finite chemistry will be given 
elsewhere.,l Here it suffices to say that a similarity transformation is applied rendering the 
governing parabolic equations elliptic. The chemistry is described using the data shown in 
Table 11. A five species, twelve step kinetic model is applied, and it is presumed that equal 
concentrations of N, and 0, (0.75 and 0.25, respectively) enter the boundary layer from its 
outer edge and (by injection) from the nose of the vehicle. The fixed ratio between the 
temperature at the wall and that far from the wall is 0.25. For the computations the matrix A 
was held constant for the first stage of splitting but allowed to vary during the second stage of 
0.d.e. integration. The temperature was held constant throughout each complete iteration. 
For the problems examined this did not significantly alter the convergence characteristics. If 
A was constructed ‘correctly’ (as in Section 3(c)) liberal initial guesses could be supplied. 
Taking A as the Jacobian necessitated more ‘correct’ initial guesses, similar to the procedure 

Table 11. Chemical kinetic model and data for reacting hypersonic boundary layer 

Rate-constants data 
( k  = A  exp (-E/T)T’) 

Reactions* x E 6 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 

O,+M-+20+M 
2 0 + M + O z + M  
N,+ M + 2N +M 
2N + M + Nz + M 

NO + M + N+ 0 + M 
N +  O+ M + NO+M 

O,+N -+ NO+ 0 
NO+O -+ Oz+N 
Nz+ 0 + NO+N 

N O + N  + Nz+ 0 
Nz + 0 2  + NO + NO 

NO+ NO -+ Nz + 0, 

9.8 x loz4 
4.7 x loz3 
3.7 x loz1 

3 x 1014 
2.3 x 1017 

6.4 x lo9 
7.6 x 1013 

6.3 x 1013 
1.3 x 1014 

6-4X 10l6 

1.5 X lo9 
1.6 x 1013 

-59,380 
0 

-113,200 
-500 

-74,900 
0 

-3150 
-19,500 
-38,000 

0 
-55,200 
-38,060 

-2.5 
-2.5 
-1.6 

0 
-0.5 
-0.5 

1 
1 
0 
0 
0 
0 

* Data culled from References 24 and 25 
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-/--. (a) 0 - 02- 03 SYSTEM . O r  -__----- 

,L+t /(b) N 2 - 0 2  SYSTEM 

Figure 4. Effect of chemical splitting parameter on convergence-non-linear kinetics: (a) reacting Couette flow, (b) 
reacting hypersonic boundary layer 

described elsewhere." The effect of the splitting parameter on convergence for both 
non-linear problems is shown in Figure 4. For the ozone-decomposition combustion (un- 
burnt gas ratios 0 : O2 : O3 = 0.0 : 0.6 : 0.4) the complete split scheme was preferred. Interest- 
ingly, the worst value of /3 is 0-9, convergence being 10 per cent slower than the optimum. 
For the N2-02 system the completely split scheme is again optimal, this time being 770 per 
cent faster than the regular unsplit scheme! In fact, the dependence of the convergence rate 
on /3 appears to be virtually linear for this case. 

The mass fraction profiles of the five reacting species are illustrated in Figure 5 and 
indicate the correct anticipated behaviour. In the thin reaction zone as much as 5 per cent of 
atomic oxygen is produced and 3 per cent of nitric oxide. The effect of this intense reaction 
region on the heat flux to the vehicle can be deduced by comparing the temperature 
gradients obtained with and without chemical reaction ((f) and (8)). The value of (dT/dq),=, 

1 .o 

.8 

.6 
m 

.4 

.2 

0 
0 5.0 10 

7 

(d) N X lo2, (e) NO X lo2, (f) T/T,, (g) TIT, with no chemical reactions 
Figure 5. Concentration and normalized temperature profiles in reacting hypersonic boundary layer; = 0; (a) O,, 

(b) N,, (c) 0 x 
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Figure 6. Temperature distribution in axisymmetric combustion chamber (lOzK) 

increases twofold due to dissociation of N2 and emphasizes the importance of accurate 
modelling of the physics in this context. 

(c) Non-linear kinetics-consistent splitting 

Finally, a more complex problem of reacting flow in a combustion chamber was solved 
using a consistent splitting scheme. The non-linear chemical kinetics and relevant steady- 
state equations are reported elsewhere.22 The problem had been previously solved using a 
tiring trial-and-error relaxation-type method for the chemical source terms, but involving no 
splitting. The use of the method of Section 3(c) with the ‘correct’ quasi-linearization of A 
enabled the entire solution to be computed without any trial-and-error in about 70 per cent 
of the CPU time previously required. The solutions were identical to those previously 
computed. Temperature contours are shown in Figure 6. 

5. CONCLUSIONS 

A new (chemically consistent) family of split-operator methods has been presented for 
computing reacting flows. Both inconsistent and consistent splitting is allowed. An analysis 
has shown conditions for convergence/stability for both linear and non-linear kinetics. In 
fact, for non-linear kinetics it is possible to construct a quasi-linearized source term matrix 
with desirable convergence/stability properties. Inclusion of a special chemical splitting 
parameter can enhance the convergence rate. Computed results indicate the usefulness and 
reliability of the new methods. 
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